Mammalian genome evolution as a result of epigenetic regulation of transposable elements.
نویسندگان
چکیده
Transposable elements (TEs) make up a large proportion of mammalian genomes and are a strong evolutionary force capable of rewiring regulatory networks and causing genome rearrangements. Additionally, there are many eukaryotic epigenetic defense mechanisms able to transcriptionally silence TEs. Furthermore, small RNA molecules that target TE DNA sequences often mediate these epigenetic defense mechanisms. As a result, epigenetic marks associated with TE silencing can be reestablished after epigenetic reprogramming - an event during the mammalian life cycle that results in widespread loss of parental epigenetic marks. Furthermore, targeted epigenetic marks associated with TE silencing may have an impact on nearby gene expression. Therefore, TEs may have driven species evolution via their ability to heritably alter the epigenetic regulation of gene expression in mammals.
منابع مشابه
Epigenetic regulation of Mammalian genomes by transposable elements.
Transposable element (TE) sequences make up a substantial fraction of mammalian genomes and exert a variety of regulatory influences on mammalian genes. We explore the contributions of TEs to the epigenetic mechanisms that regulate mammalian genomes, emphasizing nucleosome positioning and epigenetic histone modifications. A link between TEs and epigenetics rests on the fact that underlying gene...
متن کاملFriend or Foe: Epigenetic Regulation of Retrotransposons in Mammalian Oogenesis and Early Development
Epigenetics is the study of phenotypic variation arising from developmental and environmental factors regulating gene transcription at molecular, cellular, and physiological levels. A naturally occurring biological process driven by epigenetics is the egg-to-embryo developmental transition when two fully differentiated adult cells - egg and sperm - revert to an early stem cell type with totipot...
متن کاملTransposable elements and an epigenetic basis for punctuated equilibria.
Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long-term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug-of-war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylatio...
متن کاملDNA Methylation, Epigenetics, and Evolution in Vertebrates: Facts and Challenges
DNA methylation is a key epigenetic modification in the vertebrate genomes known to be involved in biological processes such as regulation of gene expression, DNA structure and control of transposable elements. Despite increasing knowledge about DNA methylation, we still lack a complete understanding of its specific functions and correlation with environment and gene expression in diverse organ...
متن کاملTransposable Elements in Human Cancer: Causes and Consequences of Deregulation
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomolecular concepts
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2014